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Higher eigenstates in boundary-layer stability theory 
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Using the Orr-Sommerfeld equation with the wavenumber as the eigenvalue, 
a search for higher eigenstates in the stability theory of the Blasius boundary 
layer has revealed the existence of a number of viscous states in addition to the 
long established fundamental state. The viscous states are discrete, belong to 
two series, and are all heavily damped in space. Within the limits of the investi- 
gation the number of viscous states existing in the layer increases as the Rey- 
nolds number and the angular frequency of the perturbation increase. It is 
suggested that the viscous eigenstates may be responsible for the excitation of 
some boundary-layer disturbances by disturbances in the free stream. 

1. Introduction 
The Orr-Sommerfeld equation is a fourth-order linear and homogeneous 

ordinary differential equation with linear and homogeneous boundary conditions, 
and therefore has an eigenvalue solution. It represents the conditions governing 
a periodic wave of very small amplitude travelling downstream in a two- 
dimensional incompressible parallel flow, and gives the distribution of wave 
amplitude in the direction transverse to the mean flow. If the boundaries of the 
flow in the transverse direction are a finite distance apart, one might reasonably 
expect to find an infinite series of discrete eigenvalues. If, however, one boundary 
lies a t  infinity, one might expect to find a continuous spectrum of eigenvalues. 
The Orr-Sommerfeld equation is used for flows that take place between parallel 
walls a finite distance apart, but it is also used for the flat-plate boundary layer 
(in the parallel-flow approximation), where the lower boundary is the flat plate 
and the upper boundary is taken at infinity. This ‘infinity’ is a necessary mathe- 
matical assumption required for the calculation of both the mean flow in the 
layer and its perturbation, but the physical thickness of the layer is effectively 
finite, limited in definable ways for a real fluid at a finite Reynolds number. 
The physical limitation on thickness enters the Orr-Sommerfeld equation 
through the functions of the mean flow which occur in the coefficients of the 
dependent variable and its second derivative. In  the boundary-layer case the 
existence of one discrete eigenvalue is well known, and the question then arises 
whether other discrete values exist. 

The equation contains three parameters; the Reynolds number R of the mean 
flow and two parameters characteristic of the perturbing wave: either a, the 
wavenumber, and c, the wave velocity, or a and the angular frequency p ( = ac). 
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R and one of the wave parameters are given arbitrary real positive values, and 
the remaining parameter becomes the eigenvalue, in general a complex quantity. 
In  all the early studies of the Orr-Sommerfeld equation, c was taken as the eigen- 
value. If the imaginary part of c is positive the wave is amplified in time. The 
existence of multiple eigenvalues means that there are many values of c for one 
choice of R and a and, in the absence of degeneracy, each eigenvalue can exist 
only if its own eigenfunction is excited. 

In  an analytical study of the eigenvalues of the Orr-Sommerfeld equation, 
Morawetz (1952) discussed three cases: (i) plane Couette flow, (ii) plane Poiseuille 
flow and (iii) the flat-plate boundary layer in the parallel-flow approximation. 
The analysis was based on Lin’s (1944) second form of solution (using asymptotic 
series). Two kinds of eigenvalue were shown to exist. The first kind consisted of 
eigenvalues each of which in the limit of vanishing viscosity (or infinite Reynolds 
number) approached asymptotically an eigenvalue of the Rayleigh inviscid 
equation for the case concerned. Eigenvalues of this kind were finite in number 
(and thus discrete) in a bounded region of the c plane, and they existed only in 
cases 2 and 3. The second kind of eigenvalue was discrete and characteristic 
only of the viscous equation. Such eigenvalues were found in cases 1 and 2 but 
not in case 3. For a given value of a and sufficiently large R, a finite number of 
values of the second kind existed within a bounded region of the c plane, but as R 
and the domain of c increased, the number of these values increased without 
limit. In  case 2, one root c of each of the following equations existed for each value 
of n: 

where h = (aR)* and the flow extends from x1 to z2. 
In  a later study of cases I and 2,  Schensted (1961) derived the eigenvalues of 

the second kind by a different method. She exploited her method to show not 
only that the number of eigenvalues was denumerably infinite when IiacRI 
increased indefinitely but also that the corresponding eigenfunctions formed a 
complete set. Any arbitrary transverse distribution of the perturbation stream 
functionf(z) could therefore be expressed as an infinite series in the eigenfunctions 
$n(z ) :  

The coefficients a, could be determined by applying the orthogonality relation: 

/ z : $ n ( ~ 2 - a 2 ) x m a z  = x m p - a 2 )  $ndz = s,,, Iz: 
where $,(z) and x,(z) are normalized eigenfunctions representing respectively the 
solutions of the Om-Sommerfeld equation and the adjoint equation when the 
boundary conditions and arbitrary parameters are the same for both equations 
and the flow extends from z1 to z2. Schensted discussed the application of (1)  
to initial-value problems, to forced vibration problems and to nonlinear stability 
theory. I n  the last of these applications it was shown that the nonlinear terms 
(which cease to be negligible for larger amplitudes of the perturbation) have two 
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physical influences: (i) nonlinear effects produced by a single eigenstate and (ii) 
nonlinear coupling between pairs of eigenstates. Interest in nonlinear processes 
as precursors of the onset of turbulence has led to many developments of non- 
linear stability theory during the past 25 years. 

There is one aspect of boundary-layer stability which has been found parti- 
cularly difficult to discuss theoretically, namely the coupling between the free 
stream and the boundary layer which allows disturbances in the free stream to 
be taken up in the boundary layer. The level of free-stream turbulence has been 
shown by various authors, but notably by Schubauer & Klebanoff (1955), to 
influence the onset of turbulence in boundary layers. This is a problem that has 
no counterpart in other applications of the Orr-Sommerfeld equation. Mathe- 
matically, the outer boundary conditions are applied a t  infinity. Physically, the 
outer limit lies where the downstream component of mean velocity reaches the 
free-stream value; beyond this limit the flow is assumed to be inviscid for a 
physically infinite distance. This model is adequate for the study of boundary- 
layer properties when the external flow in not independently perturbed, but 
it is not a suitable model for the direct analysis of the coupling between the 
external flow and the boundary layer when the external flow is the source of a 
perturbation. Boundary conditions which are compatible with the accepted 
equations for the motion cannot easily be formulated for transmission of dis- 
turbances through ‘infinity’ from the inviscid to the viscous region. If eigen- 
states of the Orr-Sommerfeld equation could be shown to exist which possess 
fluctuations in the inviscid region, and if they could be superposed on the well- 
known fundamental eigenstate and then interact with it, a method of attack on 
the coupling problem might be developed. 

The present investigation has been carried out to discover whether the 
boundary-layer stability equation has multiple eigenstates when the pertur- 
bation has a purely real frequency. A preliminary study of this kind has been 
published by Jordinson (1971). He solved the Orr-Sommerfeld equation nu- 
merically, and found a number of values of c for both time-amplified and space- 
amplified conditions. In  the present work a similar numerical method is used, 
but the solution is found only for space-amplification conditions. The corres- 
ponding time-amplification problem has recently been studied by Mack (1976). 

2. The numerical method 
A rectangular co-ordinate system is used, with the y axis coincident with the 

leading edge of the flat plate and the z axis normal to the surface of the plate. 
The free-stream velocity U, (in the x direction) and the displacement thickness 
of the layer S, are used as units of velocity and length, and the Reynolds number 
is then R = U,S,/v = m2x, where m is the Blasius constant - 1.7208. The mean 
flow in the boundary layer is represented rxm-dimensionally by U(z ) ,  the down- 
stream component of the total Blasius flow. The perturbation is represented non- 
dimensionally by the stream function 
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Substitution of (2) in the linearized vorticity equation gives the Orr-Sommerfeld 
equation in space-amplification form: 

[(D'-~t ') ' - iR(aU-p) (D'-~t ' ) f iaRU"] # = 0, (3) 

where D = d/dz, U" = d2U/dz2, p and R are known real positive parameters, 
and a is the complex eigenvalue (with positive real part). 

The boundary conditions for (3) express the fact that the perturbation vanishes 
a t  z = 0 and as z+m; a t  the outer limit we also have U = 1 and U" = 0. At the 
plate surface we have 

As x approaches infinity, (3) becomes 

# ( O )  = D$(O) = 0. 

[(D'-a')'-iR(a-,B) (D2-a2)] $ = 0, 

( 4 4  

(4b) 

which has four solutions of the form ek", where k is 
with positive real part of 

Only two of the values of k are compatible with the outer conditions, and as z -+a 

a or f y, and y is the root 

y2 = a'+ iR(a - p). 

we have 
# = A e-a5 + B e-7". 

Since there are two conditions to be satisfied at the outer limit, the two constants 
A and B can be determined. 

In  the well-known solution of (3) and (4), a, < y,,, and the outer boundary 
condition is sufficiently accurately given by writing B = 0, but this simplifica- 
tion is possible only when argy does not rise to nearly in. To examine the 
situation when a,,-@ falls to zero, with R = 0(103) and both 01, and at of order 
unity y may be expressed in the form 

When a,, - p  = 0, binomial expansion gives a convergent series for y, the highest- 
order terms for y, and yi being respectively a,(a,/B)* and (a,R)&. Then 

0 yr < a, 

and the y term in (4c) is the important one for eigenvalue determination. When 
yr falls to zero, (4c) no longer satisfies the outer boundary condition, but this 
does not occur until a, - p = - 2a,ai R-I, and valid solutions are possible above 
this limit. The residual errors in the numerical solution will contribute an un- 
certainty to the determination of the lower limit for a,; this uncertainty reaches 
its maximum in the part of the a plane around a,- /3 = 0, where the weighting 
of a,, to a, in y2 is about O(a)/O(R). 

The solution of (3) and (4) is found by a finite-difference method described in 
detail by Ross & Corner (1972). The method includes transformation of $(z)  into 
a closely related function g(z) to improve the accuracy of the finite:difference 
approximation during the integration stage. The finite-difference equations, 
incorporating the boundary conditions, are then given by 

M(a)g = 0. (5) 
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where M(a)  is an n x n pentadiagonal matrix with complex elements and g is 
a vector with n complex components. If a good approximation to a is known the 
solution to (5) is obtained by an iterative method which gives results correct 
to h4, where h is the net spacing. The numerical results are valid only when this 
convergence rate is attained. A sufficiently accurate result is usually obtained 
with 80 net points covering the range of integration 0 < z < 6. For higher 
accuracy, a smaller net spacing is used, and in some cases an extended range of z. 

If a good approximation to a is not known, or if a number of unknown eigen- 
values is sought, we use the fact that, for a non-trivial solution of ( 5 )  to exist, 
det M(a)  = 0. The non-zero elements of M(a)  are, with four exceptions, constants 
or polynomials in a with constant coefficients; the exceptional elements have 
exponents of -ha, - 2ha, - hy and - 2hy as coefficients. The function det M(a)  
therefore has no poles when a and R remain finite, but since y is double-valued 
when unrestricted, det M ( a )  has two branch points given by y = 0. One of these 
lies in the first quadrant of the a plane at 

a =  p--+... 2P3 ) + z  .(pR’ ---+... y 3 4  ) , ( R2 
and the second lies in the third quadrant. The locus of y,, = 0 in the a plane is 
the hyperbola R 

a, = ~ R + 2a, P* 

The area searched was limited to a, B p, ai 2 0, lying on one side of this line. 
The number of zeros of det M(a)  within a suitable contour C is 

N = - d[argdet M(a)] .  
2 J  c 

Rectangular contours were used, and systematic subdivision of the area of C 
allowed each zero to be located to the accuracy required for an iterative solution. 

After higher eigenstates had been found by the method described above, it 
was possible to trace the changes in their eigenvalues for constant forcing fre- 
quency F ( = P/R) and varying R by extrapolation, using the relation 

followed by iterative solution. When arg y changes continuously this process 
can give values of a such that y,, < 0. Eigenvalues of this kind will be referred 
to here as ‘non-physical’. The use of an extrapolation technique to pass from the 
physical to the non-physical solution makes it easy to ensure that Wasow’s 
(1948) monoticity condition is satisfied. 

3. The extended form of the Orr-Sommerfeld equation 
The ‘parallel mean flow approximation ’ used in deriving (3) assumes that all 

x derivatives of the mean flow stream function $ are negligible. If, instead, we 
neglect only second- and higher-order x derivatives of $, and take 

w = -a$lax, 
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the accuracy of the mean flow representation becomes the same as that of the 
Prandtl boundary-layer equation (Barry & Ross 1970). In  place of (3) we then 
have the extended equation 

[(D' - a')' - iR(aU - ,8 - i WD) (0' - a') -+ iaRU" + R W"D] Q, = 0. (6) 

The boundary conditions for Q, are unchanged at z = 0, but in place of ( 4 b )  we 
have 

[ (-0' - a')' - iR(a - /3 - i W, D )  (D2 - a2)] C$ = 0, 

and the solution of this equation is, for z + co, 

C$ = A e-az: + B e-p", (7) 

where = [y' + (@W,)']* - iRWw, (7a) 

In  our conditions I y21 is greater than ($RFVw)Z by a large factor, and t,he important 
difference between ( 7 )  and ( 4 c )  arises from the last term in ( 7 a ) .  The real part of 
,u must still be positive; there is a small region of the Riemann surface for a 
where yr > 0 but ,ur < 0, and eigenvalues of (6) occurring in this region will be 
non-physical. A few solutions of (6), ( 4 a )  and (7) were obtained for comparison 
with the main results. 

4. The higher eigenvalues and eigenvectors 
Results were initially found for a range of Reynolds numbers and a single 

non-dimensional frequency, F = /3/R = 80 x representing a constant phy- 
sical frequency in an experiment. The first search of the a plane for eigenvalues 
of (3) and ( 4 )  was made at R = 1000 and j3 = 0.08, and the results are shown 
as points on the a plane in figure 1 (a) .  Using n = 80 net points (h  = 0*075),  the 
search gave 12 points, marked ' x ', lying on a slightly curved line near a, = p. 
In  order to apply the h4-convergence test, the numerical integration was repeated 
with n = 120, marked ' 0 ', and n = 160, marked ' + '. The eigenvalues on the 
curved line varied almost linearly with h, and thus did not satisfy the h4 test. 
It was concluded that these points were eigenvalues of the three matrices, but 
not of the differential equation. Two other eigenvalues lying to the right of the 
curved line of points showed very small variations with h which satisfied the h4 
test. It was concluded that these two points were eigenvalues of the differential 
equation. 

The same procedure was carried out using (6), ( 4 a )  and (7),  with the results 
shown in figure 1 (b ) .  The area of the a plane that yields non-physical solutions 
lies to the left of the dashed line ,u,. = 0. The curved line of points now lies in the 
non-physical region, and the points on this line again move to the left as n 
increases. One stable point showing h4 convergence lies to the right of the dashed 
line. Near a = 0.09 + 0*083i, however, a ' x ' and ' +- ' indicate the movement of 
an eigenvalue to the right as n increases, and these points may represent the 
second stable state found in figure l ( a )  but now incompletely resolved from 
points on the curved line. 

A similar search over a larger area of the a plane, p < a, 6 0.6,O < ai < 1 ,  was 
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FIGURE 1. Eigenvalues (a)  of the Orr-Sommerfeld equation and (b) of the extended equa- 
tion for R = 1000, p = 0.08. X ,  n = 80, h = 0.075; 0, n = 120, h = 0.05; +, n = 160, 
h = 0.025. 

made at R = 1500 and ,8 = 0.13, using (3) and (4). The results shown in figure 2 
were obtained with n = 80. I n  this case the fundamental eigenstate is slightly 
damped, and its eigenvalue appears close to the a, axis near a,, = 0-34. Within 
the searched area no eigenvalues were found to have a higher t.alue of a, than 
the fundamental. When higher values of n were used, the fundamental eigen- 
value and t8he points a - 0.24+0.145i and a N 0.164+0.28i showed h4 conver- 
gence, but the other points in the figure did not do so. Those lying on the nearly 
vertical curve showed variations roughly proportional to h. A second line of 6 
points appears to split o€€ from the first line, and the value of a( for these points 
was found to be inversely proportional to h2, and they also were rejected. 

The two new eigenvalues attributed to the differential equation were followed 
at constant P and varying R by the extrapolation method and subsequent 
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FIGURE 2. Eigenvalues of the Orr-Sommerfeld equation for 
R = 1500, p = 0.12. T& = 80, h = 0.075. 

iterative solution. The results for 1000 < R -= 1500 are given in table 1. The 
fact that this process worked well was taken as confirmation of the view that 
higher eigenvalues of the Orr-Sommerfeld equation had been found. t Regarding 
the fundamental eigenstate as state 1, we took the new eigenvalues to belong to 
states 2 and 3, with state 2 having a higher value of a,. than state 3. A graph of 
a,, ai and ,8 us. R is shown for state 2 in figure 3, and a graph of the wave veloci- 
ties c,. = ,8cx,./la12 is shown for states 2 and 3 in figure 4. 

t Further confirmation of this conclusion has been provided by L. M. Mack (private 
communication), who has completed a search by a different numerical method (Mack 
1976) for space-amplification eigenvalues at R = 1500 and p = 0.12, in the area 
p < u, < 0.9, 0 < uj < 0-62. He found only the fundamental and two higher eigen- 
vahies, and his values agree with ours to within 0.2 yo. 
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State 2 State 3 
Reynolds - - 
number a r  ai a, ai 

1000 0.092690 0.083280 0.099548 0.125715 
1050 0.104640 0.090556 0.104671 0.138349 
1100 0.117338 0.097334 0.109709 0.161357 
1150 0.130528 0.103799 0.115416 0.165916 
1200 0.144196 0.110071 0.121137 0.180790 
1250 0.158382 0.116210 0.127868 0.196830 
1300 0.173146 0.122243 0.134399 0.213854 
1350 0.188553 0.128172 0.141036 0.231163 
1400 0.204672 0.133989 0.148271 0.248927 
1450 0.22 1580 0.1 3968 1 0.155957 0.267450 
1500 0.239369 0.145235 0-163965 0.286661 

TABLE 1. Eigenvalues a t  F = 80 x standard form of equation 
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I -100 1500 

FIGURE 3. Wave parameters arr ai and /3 vuB. R for state 2 of the Orr-Sommerfeld equation 
withF = /3IR = 0.00008. 
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i 

I000 1200 I400 
R 

FIGURE 4. c, V.S. R for states 2 and 3 of the Orr-Sommerfeld equation. 

I ,  
The functions q5,, q5i, & and q5: for the Orr-Sommerfeld equation with 

P = 80 x are given for state 2 a t  R = 1000, 1250 and 1500 in figures 5(a) 
( b )  and (G) respectively and for state 3 at R = 1000 in figure 5 (d) .  The eigenvector 
functions for state 3 a t  constant F vary with R in the same manner as those of 
state 2 ,  i.e. as R decreases the oscillations of [ 4'1 extend progressively through a 
greater depth of the mathematical boundary layer, and become significant far 
beyond the outer limit of the physical boundary layer. When the eigenvalue 
passes into the non-physical region the eigenvector has oscillations that grow 
exponentially in amplitude with increasing z. At F = 80 x and R = 1500, 
the eigenvectors for states 2 and 3 of the extended equations show only slight 
differences from those of the Orr-Sommerfeld equation, but as R is decreased 
the eigenvectors for the extended equations enter the non-physical region a t  
higher values of R. 

It is clear from table I and figure 3 that, when P remains constant and R 
decreases, the values of a, decrease quite rapidly, the rate of change being more 
marked for state 2 than for state 3. The eigenvalues of state 2 were therefore 
followed by the extrapolation method to  lower values of R to find out whether 
a, would fall below the value of p a t  some fairly well defined value of R. The 
curves in figure 6, for values of n of 80, i20 and 160, show that a, continues to 
decrease as R decreases, and becomes strongly step-length dependent. The 
most accurate of the three solutions shows an intersection of the a, and /3 lines 
near R = 915, and this value of R is regarded as a lower limit for the excitation 
of state 2 a t  the value of F concerned. The curves for ai in figure 6 show that, 
when the eigenvalues are (as described in $ 2  above) not strongly controlled by 
the digerential equation, the matrix imposes a discretization. 
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FIGURE 5 .  The functions $&), $&), $ i ( z )  and q5:(z) of the Orr-Sommerfeld equation. 
(a) State 2; R = 1000, /3 = 0.08. ( b )  State 2; R = 1250, /3 = 0.10. (c) State 2; R = 1500, 
p = 0.12. (d) State 3; R = 1000, /3 = 0.08. 
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FIGURE 6. Wave parameters cc,, aj and /3 vs. R for state 2 of the Orr-Sommerfeld eqmtion; 
a continuation of figure 3 to lower R, using n = 80, n = 120 and n = 160. 

The search for higher eigenvalues was continued at R = 3000 and R = 5000, 
and the dependence on P was examined. As R and P were increased, more eigen- 
values of the differential equation emerged from the line of points. The results 
obtained a t  R = 3000 are shown in table 2. The increase in R and the recurring 
problem of separating the emerging eigenvalues from the line of points called for 
higher resolution. The results in table 2 were obtained with n = 240, 0 < z < 6 
(h = 0.025); all the tabulated values satisfied the h4-convergence test but those 
shown in brackets were not clearly separated from the line of matrix eigenvalues. 
The higher states of even order have a, > mi, and those of odd order have a,, < ai. 
When P is well above its threshold the eigenvalues occur in pairs, with 

a\?n+l) and ,\?n) aGn+l). 

Figure 7 is a graph of log ai vs. log a, for four values of F,  the data being taken 
from table 2. For a given value of P, the points (indicated by an open symbol) 
lie on two lines, the upper and lower lines being formed respectively by the odd- 
order and even-order eigenvalues. The straight lines on the graph are drawn 
through the points for states 3 and 5 and through the points for states 2 and 4. 
The two lines for one value of P intersect near the point (p, /3) (indicated by the 
corresponding solid symbol), with /3 = FR. The distances along any of these 
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cc, 
FIGURE 7. Logarithmic plot of ai vs. ar for all states existing at R = 3000. 0, 106F = 50;  
0, 106F = 80;  a, 106F = 120; A, 1063’ = 160. Solid symbols represent @,p) with 
p = FR. 

lines between the points for states 2 and 4 and between the points for states 3 
and 5 are nearly constant. A similar relation exists for states 2 and 6 and states 
3 and 7. 

5. Interpretation of the results 
The nature of the higher eigenstates 

At R = 1000 the functions #; and #: for states 2 and 3 show many fluctuations, 
and in this respect differ greatly from the function ] # ’ I  for the fundamental 
eigenstate, which shows only one phase reversal in the range 0 < z < 00. All 
the other higher eigenstates have well-developed oscillatory functions when they 
emerge from the line of points. The ‘mean wavelength’ and the ‘mean logarith- 
mic decrement per wavelength’ were therefore estimated from the differentiated 
functions in figures 5 (a)  and ( d )  and compared with the corresponding quantities 
given by e-”, where q = [iB(a-/3)]~ = q,.++qi. This function was taken as a 
first approximation to the exponential factor in the asymptotic viscous solution 
to the Orr-Sommerfeld equation for a boundary layer (Lin 1944): 

$&) = (U - c)-% exp 
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‘Mean wavelength’ ‘Mean logarithmic decrement’ 

2 4 P i  Matrix solution 27rq,./qt Matrix solution 

A 
I 

A 
\ I  

State 2 0.687 0.70 0.482 0.461 
State 3 0.560 0.58 0.491 0.486 

TABLE 3. Comparison of e-qz with the matrix solution for $‘(z) for states 2 and 3 
at R = 1000 and z > 2 

FIGURE 8. Functions $ i (z )  and $:(z) calculated from (9) 
with the parameters of the functions in figure 5 ( b ) .  

In  (8), z is a complex variable and U(zJ = c, but when z is real and greater than 
2 the difference between q and the integrand in (8) is negligible for present 
purposes. The calculated mean wavelength is 2n/qi and the calculated decrement 
is 2nq,/qi. These calculated quantities are compared in table 3 with the corres- 
ponding properties of the functions $; and q5: in figures 5 ( a )  and (d) .  The agree- 
ment shown in the table suggests that the eigenfunctions are viscous solutions of 
(3). At R > 1000 and 106P = 80, the logarithmic decrements for state 2 become 
too large to allow the same test to be applied. A first approximation to 4; and & 
was therefore computed from 

$ ’ ( x )  = - [ i a R ( U - c ) ] * $ ( ~ ) ,  (9) 
where $ ( x )  is given by (8). Figure 8 shows the result of the calculation for 
R = 1250, ,!I = 0.10 and a = 0.1584+i0-1162. The exponential factor in (8) 
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c, c, 

++a 

FIGURE 9. Geometry of the complex z plane for the higher eigenvalues 
of the Blasius boundary layer. 

automatically satisfies the outer boundary conditions, but in Lin’s solution the 
boundary conditions at z = 0 were satisfied only for the sum of the viscous and 
inviscid solutions. Equation (9) was therefore computed only outwards from z,, 
with the results shown in figure 8. The close similarity between this graph and 
the corresponding curves in figure 5 ( b )  confims the predominantly viscous 
character of state 2. 

Comparison with analytical theory 

Our numerical solutions are not inconsistent with the analytical results estab- 
lished by Wasow (1948, 1950, 1953) and summarized by Lin (1955). Wasow 
proved that there exists a ‘complete fundamental system’ of functions of the 
complex variable x which provides solutions to the Orr-Sommerfeld equation in 
‘ the full complex neighbourhood’ of the branch point 2,. A comparison between 
our results and this analytical theory is of special interest because it suggests an 
explanation of the ‘pairing’ of the higher states. 

For the damped solutions with which we are concerned, the analytical features 
of the complex z plane are illustrated in figure 9. z, has a positive real part and a 
negative imaginary part. Three branch lines C,, C, and C, representing the loci 

Re [iccR{ U ( z )  - c)]f dz = 0 la: 
emerge from z, at angles of Qn- - 6 arg a, $ 7 ~  - 4 arg 01 and # 7 ~  - 4 arg 01. The function 
U(z )  is nearly linear for small values of z, and for our z, values the branch lines 
are almost straight. C, and C, therefore intersect the real axis a t  PI and P,. 
Wasow’s proofs are given for a closed domain 8 defined by a bounding circle 
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centred on z, and having a large but finite radius. Closed subdomains S, are 
defined by the bounding circle and the lines C,, j + n. The position of the origin 
of z in figure 9 depends on arg z,. For the fundamental and the higher eigenstates 
of even order it lies in S, slightly to the left of P,, and for the eigenstates of odd 
order it lies in S, slightly to the right of I?,. The analytical solution differs in 
these two cases because the eigenfunctions extend in the first case into three sub- 
domains and in the second case into only two. 

Wasow’s solution employs the seven functions A,, U, and V (n = 1,2,3), all of 
which are single valued and uniformly continuous in the following domains: A ,  in 
S - C,, U, in S- S, and V in S. The functions A,  are viscous solutions, tending 
asymptotically to (8) as aR increases, the real part of the exponent being nega- 
tive in S, and positive in the adjacent subdomains. A ,  is therefore discontinuous 
across C,. The functions U, are the asymptotically inviscid solutions, having a 
logarithmic singularity a t  z, and Stokes-effect changes of form on crossing C,, 
j + n. At finite values of aR the Orr-Sommerfeld equation is not singular; the 
singularities in A ,  and U, appear when analytical methods are used to separate 
the four independent functions which provide a complete analytical solution. 
Wasow gives three auxiliary relations connecting the seven functions, and these 
relations explain the continuity of the total solution in the neighbourhood of the 
branch lines; they also show that, in S,, U, assumes the character of the viscous . 
solutions with positive real part for the exponent. Solutions of the Orr-Sommer- 
feld equation therefore exist on the real axis both when two subdomains and 
when three subdomains are involved. 

When the origin of z lies in S,, and the boundary conditions for #(z)  limit z 
to  the sectors S, and S,, the solution is of the form 

# = V+U,+A, .  (10a) 

A ,  has an exponent with positive real part in S, and negative real part in 8,. 
When the origin lies in X,, and the boundary conditions require z to extend from 
8, through S, to S,, the solution is of the form 

4 = B+U,+A,. ( l o b )  

Within S,, 77, behaves asymptotically like A,  + U,, and in this sector both A,  
and A ,  have exponents with positive real part. 

The following comparison between the analytical and the numerical results 
is based on the seven eigenvectors computed with R = 5000 and 1O6F = 80. In  
every case, # shows rapid oscillations attributable to the A,  functions. These 
occupy a range of z which decreases as the order of the state decreases, i.e. as 
the distance of z, from the real axis decreases. The maximum amplitude of the 
oscillations occurs slightly outside P,. The oscillations of the highest-order state 
(the eighth) remain detectable for a considerable distance within 8,. The A ,  
oscillations are superposed on slow variations in 4 arising from V and U, (see 
figures 5 b ,  c); very weak fluctuations with wavelengths in the z direction of the 
order of the total boundary-layer thickness appear to arise from V + U,. There 
is one marked difference between the numerical solutions for the odd and even 
orders. From the plate surface the phase angle of # decreases monotonically for 

7 F L Y  77 
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the odd orders. For the even orders arg q5 increases until C, is crossed and then, 
changing steeply a t  first, decreases monotonically. 

The eigenvalue thresholds and aggregate properties 

The threshold eigenvalues of the higher states cannot be found directly, but 
the threshold condition y, = 0 is equivalent to R(a, -p) = - 2a,ai, which makes 
a, very slightly less than p. The remaining equation, yf = Rcci - (a: - at), leaves 
the threshold values of yi and ai indeterminate. Figure 7 suggests, however, 
that the 2n and 2n + 1 states have a common threshold with two-fold degeneracy, 
and that the thresholds for all the states lie near the line log ai = log a,. Since 
the intersections of the straight lines in figure 7 lie below this line, it is possible 
that a( is slightly smaller than a, at threshold. It may be noted here that the 
time-amplification eigenvalues were reported by Morawetz to have at most two- 
fold degeneracy. 

Certain regularities in the distances between points in figure 7 were noted in 
$4, and these may be expressed by equations. If R and P have high values, so 
that many eigenvalues exist, and if a(%) denotes the nth-order eigenvalue, then 

where k, is about 0.8, the other k, are constants rising to 1 as n increases, and lI 
and I ,  behave like kyl and k;l. Thus k, and 1, tend to unity as the range in z of 
the oscillatory part of q5 increases. No simple connexion appears to exist between 
the equations given above and those given by Morawetz (see 5 1) for the viscous 
eigenvalues in time-amplified flows between parallel walls. 

/3% or F t  atconstantR, 

N R!Z a t  constant /?, /rp a t  constant P. 

Other useful approximate relations that hold well above threshold are 

The higher eigenstates for the perturbed boundary layer are all quite highly 
damped, and it follows that the ‘group velocity’ concept is not applicable to 
them (see, for example, Jeffreys & Jeffreys 1966; Brillouin 1946). The energy 
required to maintain the states must therefore be supplied from an external 
source. When this occurs, the eigenstates will have an ‘energy velocity’ governed 
by the velocity of propagation of the disturbance that supplies the energy. 

The coupling of the meanjlow and the boundary layer 

This study has shown that the boundary layer possesses, in addition to the 
fundamental eigenstate, two series of higher eigenstates, each higher state 
having a threshold depending on R and 3’. On its first appearance each higher 
eigenvector has a low logarithmic decrement per wavelength in the z direction. 
The eigenvector then extends for a considerable distance into the inviscid region 
of the total flow. As R increases, the logarithmic decrement increases rapidly, 
and the oscillations become confined to the neighbourhood of 2,. This suggests 
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that the coupling of the boundary layer and the mean flow could be operated by 
eigenvectors having oscillations in the inviscid region. 

The most important consequence of this coupling is the phenomenon of break- 
down of laminar flow, which is well known to depend on the level of free-stream 
fluctuations. The finer details of breakdown under conditions of both natural and 
forced transition can be seen in the continuous recordings of hot-wire signals 
obtained by Schubauer & Klebanoff (1955) and Schubauer (1958). We are here 
interested mainly in their observations of natural transition. When the free- 
stream turbulence in their tunnel was reduced to 0.03 %, natural transition was 
preceded by the appearance of waves with a frequency of about 180 Hz, and 
it must be inferred that this frequency was prominent in the residual turbulence. 
One of the hot wires was mounted close to the flat plate, and its recordings show 
the following features of the breakdown process. 

(i) The suddenness of the change in the boundary-layer flow. The breakdown 
process occupied a total time of the order of 0.003 s. 

(ii) Within this short period there first appeared a few high frequency oscilla- 
tions without change in the mean flow. 

(iii) This was followed by an abrupt rise in mean velocity with superposed 
fluctuations indicating that turbulent-spot behaviour had supervened. 

It is possible that these effects might be produced by a higher eigenstate which, 
at the effective local Reynolds number, crosses its threshold and thus becomes 
able, quite suddenly, to penetrate into the boundary layer. If the resulting 
disturbance of the previously established flow generated a Reynolds stress 
acting preferentially towards the plate surface, the fluid could be moved towards 
the plate surface to produce a rise in mean velocity and initiate turbulent-spot 
behaviour. In  figure 1 of Schubauer & Klebanoff the beginning of natural 
transition occurs with V, = 80 ft/s, X = 5.6 f t  and a frequency of 180 Hz. 
These values give R N 2820 and 3 N 29 x corresponding closely to the 
threshold for state 4, as shown in our table 2. It is not possible to give a similar 
comparison for breakdown in the calmed regions because the effective Reynolds 
number in these regions is not known. 

The same authors show that, in the amplifying region, forced transition is more 
complicated than natural transition, involving an incipient breakdown stage 
which has been studied ingreater detail by Klebanoff, Tidstrom & Sargent (1962) 
and Kovasznay, Komoda & Vasudeva (1962). All the recordings of incipient 
breakdown show the presence of nearly periodic, high frequency fluctuations 
superposed on the primary perturbation: fluctuations that are damped out 
rapidly within each primary cycle. This indicates the existence of a mechanism 
operating with perfect regularity and having a spatial periodicity which might 
be related to higher eigenstates. 

The authors gratefully acknowledge the support of this work by the Depart- 
ment of Trade and Industry in meeting half the costs of computation and provid- 
ing a maintenance grant for one of the authors (D.J.R.H.). A Science Research 
Council Studentship was awarded to D. C. 
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Appendix 
By M. A. 8. Ross 

It has been suggeskd by a referee that a comparison should be made between our 
use of (6) and the methods developed by Bouthier (1972,1973) and Gaster (1974) 
for solving the space-amplification stability problem in Blasius flow. These 
authors use stream functions in the form of series expansions in powers of' the 
reciprocal of a boundary-layer Reynolds number; they introduce the downstream 
co-ordinate explicitly in the eigenfunction; they solve the Orr-Sommerfeld 
equation completely to find a first approximation to the eigenvalue, but they do 
not solve for the eigenfunction at their more accurate level of solut*ion. 

Gaster takes 

Bouthier's (1972) equation (70) applied to the space-amplification case be- 
comes 

with 

and < = ( q x / v ) *  for q < E. 
x + iy = (v /u , )  (E + i q ) 2  

Since 

4 5 )  = exp i [ - i/$logA(S) 4, 
the function ( - i/A(C)) dA(C)/d< is an additive correction to the wavenumber 
already present in the exponential factor in the stream function. The stability 
equations resulting from the introduction of (A 1) and (A 2) contain the Orr- 
Sommerfeld terms in #o, second-order terms in $o and the highest-order terms 
in $l. After one stage of analytical integration with respect to r ] ,  the terms in $1 
are eliminated and an ordinary differential equation for A(6) remains. 

To compare our method with the work of Bouthier and Gaster let us take a 
stream function in dimensional rectangular co-ordinates similar to the first term 
of (A 1) and (A 2), but with the possible amplitude factor A(x)  already absorbed 
in the exponent': 

$(x, z, t )  = #(x, z )  exp i [ Iz: a(x)  dx - p t ] .  

The real and imaginary parts of a differ greatly in their x dependence; for a 
sustained periodic disturbance, a&) is nearly independent of x, while a&) 
passes through a minimum which may have a positive (stable) or negative 
(unstable) value; moreover, at the peak of the neutral-stability curve, a$ = 0 
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and da,/dx = 0, and at this point the higher derivatives of a, may be important. 
The main variations of q3 are z dependent, 

and within the accuracy of the Blasius solution for the mean flow a2q3/ax2 is 
negligible. The complete stability equation is then 

(uia-ip) (#"-a")- U"ia#-V(VV-2a2+"+01.4q3)+ w(v-a"f)- W"qY 

da]a+ [ da 

d a  .d2a 
dx ax dx dx dx2 '1 ' -+ p-- -3a-U+~-  

In  the immediate vicinity of the plate, where U and U" are very small, the Orr- 
Sommerfeld equation reduces to 

- ip(#" - a2q5) - Y(#"" - 2a2q3") - 0. 

The absolute magnitude of these two terms near the plate can greatly exceed 
the magnitude of any other term a t  any larger z. It follows that near the plate 
a significant second-order effect may come from the viscous term. 

I n  our method the solution of (A 3) is found in very long and thin strip ele- 
ments, each extending in the z direction from the plate into the free stream and 
having in the x direction a width dx sufficient to accommodate only first-order 
x derivatives. It is necessary to decide which terms of (A 3) will be significant 
within the elementary strip. 

Consider first the integral 

J ) )  dx. 

This integral is meaningful only when it is taken over a range of x within which 
a is variable. In  our strip of infinitesimal width, a can be treated as a local con- 
stant, and the integral becomes a(x)  dx. It is clear that for our method the expo- 
nent in (2) is preferable to the form assumed here. The x in (2) must, however, 
be regarded as having an arbitrary origin, while the x required to calculate 
U ,  W or R has origin a t  the leading edge of the plate. All the x derivatives of a 
will be omitted from (A 3). This does not mean that the x derivatives of a cannot 
be found, but merely that to find them two or more strips at different values of 
x must be used. The derivatives will all be present in the solution taken over a 
sufficient range of x. 

The equation has now been reduced to the fist line of (A 3) and six terms 
involving a#lax, four in line 2 and two in line 3. With the strip centred a t  a 
chosen value of x,  the dimensional values of U,  U", W and W" are calculated. 
These functions may be assumed to be constant over the width of the strip, and 
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thus to be functions of z alone. This assumption is not equivalent to assuming the 
mean flow to be parallel to the plate; the direction of the mean flow is z depen- 
dent. Since all the coefficients of the remaining terms in (A 3) are either constant 
or z dependent, the equation is separable in x and z. Writing $(x, z )  = C(x)  F( z )  
and taking LA and L, as the operators generating the terms multiplied respec- 
tively by C(x)  and dC(x)/dx, we have 

- -ik, L A [ W ) l  - 1 dC(x) 
Lg[p(z)] - - c ( z ) d x  - 

where k is a constant of order R;* (with negligible second and higher powers) 
which cannot be determined for lack of boundary conditions in x. Also 

+ ikLE[p(z)I 

for wavenumber a is LA[P(2)] for wavenumber a + k .  Thus k appears to be an 
uncertainty of order R;* in the wavenumber. The six remaining terms in lines 
2 and 3 of (A 3) have now become absorbed in terms in the first line, reducing 
(A 3) to the dimensional form of (6). 

It is necessary to ask whether the resulting solution for a is indeed subject to 
an uncertainty introduced by k. In  our view the answer is no. The uncertainty 
arises because x has been introduced explicitly in $. If this is not done then $ 
is still x dependent: in the dimensional equation through downstream changes 
in U and W and in the dimensionless case through R and the dimensionless 
2 = z/Sl = z/sx*, with s = 1*7208(U,/v)*. The introduction of x explicitly in $ is 
redundant for our method of solution. 

Since a non-dimensional solution is required, the reduced form of (A 3) is 
made non-dimensional using the local value of 8, as the unit of length. Numerical 
solution of (6) by the method of Ross & Corner (1972) gives simultaneously the 
eigenfunction and eigenvalue as functions of R = U0SJv. 

Let us now consider the question of the continuity of solutions obtained by 
strip integration, doubts about which appear to have led to the investigations 
of Bouthier and Gaster. It wi1s realized by Schubauer & Skramstad (1947) that 
the amplification should be expressed in dimensional variables. The dimensional 
continuity equation and stream function are applicable at all x. The dimension- 
less solution 

@ = P(Z)  exp i(a'X - Bt), 

with Z = z/sx*, X = x*/s and at = ax*, converts to 

@ = U,sx*~(z/sx*) expi(ax-/?t), 

giving zc = = UoS'(z/sx*) exp i(ax - ,dt) 

and 

The real part of (A 4) gives the amplification constant. The term ia carries the 
amplification within a strip and the second term carries the more complicated x- 
and z-dependent change on passing through a succession of contiguous strips. 
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The conclusion drawn from the above arguments is that (6) is a correct and 
complete equation for the solution of the Blasius stability problem. A complete 
eigenstate solution is obtainable, and the arbitrary numerical factor introduced 
in the normalization of F(z)  cancels out in the complete expression for the 
amplification constant. 
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